Land Habitats


On land, animal habitats are strongly influenced by climate, the combination of precipitation and temperature conditions experienced in a region. At or near the equator, year-round moisture and warmth generates a constant supply of food. Further north or south, seasonal changes become much more pronounced, shaping the type of animals that live in different habitats and their strategies for survival (see Animal Distribution).

Tropical and subtropical forests are home to by far the largest number of animal species on land. These animals include the majority of the world's insects, most of its primates, and a large proportion of its birds. Tropical forests have existed longer than any other forests on earth and their plants and animals have evolved an elaborate web of interrelationships.

Much of the animal life of tropical forests is still poorly known, and new species are constantly being discovered. The majority of these newly identified animals are invertebrates, but larger animals have also come to light during the 20th century. Major discoveries have included three large but secretive plant-eating mammals: the okapi, discovered in Central Africa in 1900; the kouprey, discovered in the forests of Cambodia in 1937; and the sao la, which was identified in forests bordering Laos and Vietnam in 1993.

Unlike tropical forests, temperate forests provide animals with an abundance of food during spring and summer, but a dearth during the winter. In this habitat, animals have evolved several different strategies for avoiding starvation during the winter months. Food hoarders, such as squirrels and jay birds, bury surplus food during the fall, and dig it up again when other food supplies run out. Other forest animals, such as the common dormouse, avoid food shortages by hibernation, a period of inactivity when body temperature is lowered. A third group of animals—composed chiefly of birds, but also including some bats and insects–migrates to warmer regions before the winter begins and returns again in spring. In boreal forests, which are found in the far north, the seasonal swings are more extreme. Here only a few species stay and remain active during the winter months.

For land animals, the most testing habitats are ones that experience intense drought or extreme cold. Desert animals cope with heat and water shortage by behavioral adaptations, such as remaining below ground by day, and also by physiological adaptations. North American kangaroo rats, for example, can live entirely on dry seeds without ever drinking liquid water. They do this by losing very little moisture from their bodies and using all the "metabolic water" that is formed when food is broken down to release energy.

In tundra and on polar ice, winter air temperatures can fall to below -40° C (-40° F), which is far colder than the temperature of the surrounding seas. The smallest inhabitants of tundra, which include vast numbers of mosquitoes and other biting flies, spend winter in a state of suspended animation and are kept alive by chemical antifreeze within their tissues. The few animals that do remain active on land or ice during winter, such as seals and male emperor penguins, rely on a thick layer of insulating fat to prevent their body heat leaking away. Without this fat, they would die within a matter of minutes.

Aquatic Habitats

Animal life first arose in water. Millions of years later, marine and freshwater habitats continue to support a large proportion of the animal life on earth. Aquatic habitats—particularly in the seas and oceans–rarely experience abrupt changes in conditions, which is a major advantage for living things.

In the seas and oceans, the greatest diversity of animal life is found in habitats close to shores. The richest of all these habitats are coral reefs, underwater ridges that form in clear water where the minimum temperature is 20° C (68° F) or above. Coral reefs are composed of an accumulation of the remains of coral—invertebrates with stony skeletons—calcareous red algae, and mollusks. One of the reasons for the great diversity of animal life in reefs is that living coral creates a complex three-dimensional landscape, with many different microhabitats. The smallest crevices provide hiding places for scavengers such as crabs and shrimps, while larger ones conceal predators such as octopuses and moray eels. Over half the world's fish species live in coral reefs, many hiding away by day and emerging after dark to feed.

On reefs and rocky shores, many animals are sessile, meaning that they spend their entire adult lives fixed in one place. These species, which include sponges, barnacles, and mollusks, as well as reef-building corals themselves, typically spend the early part of their lives as drifting larvae, before settling on a solid surface and changing shape. Sessile animals are common in aquatic habitats because it is relatively easy for them to collect food, which typically is pushed in the animal’s direction by water currents. By contrast, very few sessile animals have evolved on land.

In open water, depth has a marked influence on animal lifestyles. The surface layers of the open sea teem with small and submicroscopic animals, which feed either on algae and other plantlike organisms or on each other. These animals form part of the plankton, a complex community of living things that drifts passively with the currents. Many planktonic animals can adjust the depth at which they float, but larger animals such as fish, squid, and marine mammals, are strong enough to commute between the surface and the depths far below.

Even in the clearest water, light quickly fades with increasing depth. Deeper than about 150 m (500 ft), not enough light penetrates for photosynthesis to occur, so algae are unable to survive. With increasing depth, water pressure rises and temperature falls, ultimately coming close to the freezing point on the ocean floor. Despite these extreme conditions, animal life is found in the ocean's greatest depths, fueled by the constant rain of organic debris that drifts down from far above. In a habitat where prey is widely scattered, many deep-sea fish can swallow animals larger than themselves, an adaptation that allows them to go weeks or months between meals.

Cold-blooded and Warm-blooded Animals

.
On land, some invertebrates manage to overcome the problem of cold by using muscles to warm themselves. For example, many large moths and bumblebees use a special form of shivering to raise their body temperature to 35°C (95°F) before they take off, which allows them to fly in cool weather. Bees also maintain warm conditions in their nests, which speeds up the development of their young. But in invertebrates as a whole, temperature regulation is very unusual. In vertebrates, on the other hand, it has developed to a high degree.

Vertebrates are customarily divided into cold-blooded and warm-blooded animals, but these labels are not very precise. Biologists normally use the terms ectoderm and endoderm to describe temperature regulation more accurately. An ectoderm is an animal whose temperature is dictated by its surroundings, while an endoderm is one that keeps its body at a constant warm temperature by generating internal heat.

Reptiles, amphibians, and fish are ectoderms. Although they do not maintain a constant warm temperature, some of these animals do manage to raise their body temperature far above that of their surroundings. They do this by behavioral means, such as basking in direct sunshine when the surrounding air is cool. Mammals and birds are endoderms. These animals generate heat through their metabolic processes, and they retain it by having insulating layers of fat, fur, or feathers. Because their bodies are always warm, they can remain active in some of the coldest conditions on earth.

Digestive Systems of Animals

The simplest invertebrates (animals without backbones) do not have specialized digestive organs. Single-celled organisms, such as amoebas, rely on intracellular digestion (digestion within the cell). Some many-celled organisms, such as the sponge, also use intracellular digestion. The sponge obtains the tiny organic particles that make up its diet from water passing through its body. Water enters through the sponge’s pores and leaves through an opening called the osculum. As water flows through the interior canals of the sponge, specialized cells that line these canals, called collar cells, catch and engulf organic matter. Inside the collar cells, sacs called vacuoles form around the food and enzymes digest it. The digested food then passes to other cells in the sponge’s body.

Intracellular digestion meets the needs of simple animals, but more complex organisms require systems that are more specialized. Animals such as jellyfish and nonparasitic flatworms combine the intracellular process with some specialized digestive organs. These animals have a definite mouth and a saclike cavity, which is lined with digestive cells that secrete enzymes. Digestion begins when the enzymes break down food inside the cavity in an extracellular (outside the cell) process. Cells then engulf the partly digested food, and an intracellular process similar to that of sponges completes digestion. Wastes are excreted through the mouth.

Most of the more complex invertebrates and all vertebrates (animals with a backbone) digest food entirely through extracellular processes. Food moves in one direction, from mouth to anus, through the series of organs that make up the alimentary canal. Specialization of various parts of the alimentary canal improves the body’s ability to break down food and absorb various kinds of nutrients. The mouth of many animals contains teeth or other structures to break up large lumps of food. Behind the mouth, the pharynx and esophagus swallow the food and move it to the stomach. The stomach temporarily stores the food, mixes it with digestive juices, and carries out some digestion.

Digestion is completed in the intestine. The liver and pancreas pour their digestive juices into the anterior (front) end of this organ. After the anterior intestine absorbs the usable products of digestion, the walls of the posterior (rear) intestine absorb leftover water. In vertebrates the anterior intestine is called the small intestine; the posterior intestine is the large intestine. Feces, composed of unabsorbed and indigestible food residues, form in the posterior intestine, where they are stored until they are excreted through the anus.

Within this basic plan, the specific components of the digestive system vary enormously from one animal to another. For example, a fish’s pharynx contains gill slits for breathing but has no digestive function. An earthworm’s stomach consists of two organs: a crop, in which food is stored, and a muscular gizzard, which carries out mechanical digestion by grinding food against particles of sand. The stomachs of ruminant mammals, such as cattle and deer, consist of three or four compartments, each performing a specific function. Amphibians, reptiles, and birds have an organ called a cloaca, which serves as an exit for both digestive wastes and sex cells.

Tick

Tick, common name for members of a group of large mitelike arachnids parasitic on mammals, birds, and reptiles. All ticks are bloodsucking parasites. Ticks are found in most parts of the world but are generally limited to those habitats frequented by their hosts—namely, woods, tall grass, and shrubby vegetation—where they climb onto plants and wait to jump on a passing host.

Ticks are actually a specialized group of mites and share many features with other mites. In general, they are larger than most mites, ranging from about 0.2 to 0.6 cm (about 0.08 to 0.24 in) in length, although females may be 1 cm (0.4 in) or more in diameter when fully engorged with blood. The adult tick has a mitelike body with a tough skin and four pairs of clawed legs; tick larvae have only three pairs of legs. The mouthparts consist of a paired anchoring organ, or rostrum, covered with backward-curving hooks and equivalent to the pedipalps of other arachnids; and a pair of sharp mandibles that move back and forth in two longitudinal channels on the rostrum.

Ticks are divided into two families: hard ticks and soft ticks. In hard ticks, the mouthparts are visible from above. Hard ticks are parasites primarily of mammals but are also found on birds and reptiles. The nymphs may feed on a different host species in each developmental stage; in each stage, the nymph feeds only once. The adult female lays a single large batch of eggs after her final meal. The American dog tick is perhaps the most familiar North American hard tick. Another important species is the deer tick, which is known to transmit Lyme disease to humans.

In soft ticks, the mouthparts are hidden underneath the body. In general, soft ticks are parasites of birds, but some feed on other hosts. Usually all the developmental stages feed on a single host species. Each stage may feed many times over a period of at least several days, taking refuge in nearby crevices or under rocks when not feeding. The adult female soft tick lays relatively few eggs over an extended period. The relapsing-fever tick is a soft tick that occasionally bites humans.

Popular Posts